Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
TOP1(mark1(X)) -> PROPER1(X)
ACTIVE1(f1(X)) -> ACTIVE1(X)
P1(mark1(X)) -> P1(X)
ACTIVE1(f1(0)) -> CONS2(0, f1(s1(0)))
S1(mark1(X)) -> S1(X)
ACTIVE1(p1(X)) -> ACTIVE1(X)
PROPER1(f1(X)) -> PROPER1(X)
ACTIVE1(f1(s1(0))) -> F1(p1(s1(0)))
TOP1(mark1(X)) -> TOP1(proper1(X))
PROPER1(s1(X)) -> S1(proper1(X))
PROPER1(p1(X)) -> P1(proper1(X))
S1(ok1(X)) -> S1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
ACTIVE1(f1(s1(0))) -> P1(s1(0))
CONS2(mark1(X1), X2) -> CONS2(X1, X2)
ACTIVE1(cons2(X1, X2)) -> CONS2(active1(X1), X2)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
ACTIVE1(f1(X)) -> F1(active1(X))
P1(ok1(X)) -> P1(X)
TOP1(ok1(X)) -> ACTIVE1(X)
ACTIVE1(p1(X)) -> P1(active1(X))
ACTIVE1(f1(0)) -> S1(0)
F1(mark1(X)) -> F1(X)
ACTIVE1(s1(X)) -> S1(active1(X))
PROPER1(cons2(X1, X2)) -> CONS2(proper1(X1), proper1(X2))
PROPER1(s1(X)) -> PROPER1(X)
TOP1(ok1(X)) -> TOP1(active1(X))
F1(ok1(X)) -> F1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)
ACTIVE1(f1(0)) -> F1(s1(0))
PROPER1(f1(X)) -> F1(proper1(X))
PROPER1(p1(X)) -> PROPER1(X)
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
TOP1(mark1(X)) -> PROPER1(X)
ACTIVE1(f1(X)) -> ACTIVE1(X)
P1(mark1(X)) -> P1(X)
ACTIVE1(f1(0)) -> CONS2(0, f1(s1(0)))
S1(mark1(X)) -> S1(X)
ACTIVE1(p1(X)) -> ACTIVE1(X)
PROPER1(f1(X)) -> PROPER1(X)
ACTIVE1(f1(s1(0))) -> F1(p1(s1(0)))
TOP1(mark1(X)) -> TOP1(proper1(X))
PROPER1(s1(X)) -> S1(proper1(X))
PROPER1(p1(X)) -> P1(proper1(X))
S1(ok1(X)) -> S1(X)
ACTIVE1(s1(X)) -> ACTIVE1(X)
ACTIVE1(f1(s1(0))) -> P1(s1(0))
CONS2(mark1(X1), X2) -> CONS2(X1, X2)
ACTIVE1(cons2(X1, X2)) -> CONS2(active1(X1), X2)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
ACTIVE1(f1(X)) -> F1(active1(X))
P1(ok1(X)) -> P1(X)
TOP1(ok1(X)) -> ACTIVE1(X)
ACTIVE1(p1(X)) -> P1(active1(X))
ACTIVE1(f1(0)) -> S1(0)
F1(mark1(X)) -> F1(X)
ACTIVE1(s1(X)) -> S1(active1(X))
PROPER1(cons2(X1, X2)) -> CONS2(proper1(X1), proper1(X2))
PROPER1(s1(X)) -> PROPER1(X)
TOP1(ok1(X)) -> TOP1(active1(X))
F1(ok1(X)) -> F1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)
ACTIVE1(f1(0)) -> F1(s1(0))
PROPER1(f1(X)) -> F1(proper1(X))
PROPER1(p1(X)) -> PROPER1(X)
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 7 SCCs with 15 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
P1(mark1(X)) -> P1(X)
P1(ok1(X)) -> P1(X)
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
P1(ok1(X)) -> P1(X)
Used argument filtering: P1(x1) = x1
mark1(x1) = x1
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
P1(mark1(X)) -> P1(X)
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
P1(mark1(X)) -> P1(X)
Used argument filtering: P1(x1) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
S1(ok1(X)) -> S1(X)
S1(mark1(X)) -> S1(X)
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
S1(mark1(X)) -> S1(X)
Used argument filtering: S1(x1) = x1
ok1(x1) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
S1(ok1(X)) -> S1(X)
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
S1(ok1(X)) -> S1(X)
Used argument filtering: S1(x1) = x1
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CONS2(mark1(X1), X2) -> CONS2(X1, X2)
CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
CONS2(ok1(X1), ok1(X2)) -> CONS2(X1, X2)
Used argument filtering: CONS2(x1, x2) = x2
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CONS2(mark1(X1), X2) -> CONS2(X1, X2)
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
CONS2(mark1(X1), X2) -> CONS2(X1, X2)
Used argument filtering: CONS2(x1, x2) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F1(mark1(X)) -> F1(X)
F1(ok1(X)) -> F1(X)
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
F1(ok1(X)) -> F1(X)
Used argument filtering: F1(x1) = x1
mark1(x1) = x1
ok1(x1) = ok1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F1(mark1(X)) -> F1(X)
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
F1(mark1(X)) -> F1(X)
Used argument filtering: F1(x1) = x1
mark1(x1) = mark1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER1(s1(X)) -> PROPER1(X)
PROPER1(f1(X)) -> PROPER1(X)
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
PROPER1(p1(X)) -> PROPER1(X)
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PROPER1(cons2(X1, X2)) -> PROPER1(X1)
PROPER1(cons2(X1, X2)) -> PROPER1(X2)
Used argument filtering: PROPER1(x1) = x1
s1(x1) = x1
f1(x1) = x1
cons2(x1, x2) = cons2(x1, x2)
p1(x1) = x1
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER1(f1(X)) -> PROPER1(X)
PROPER1(s1(X)) -> PROPER1(X)
PROPER1(p1(X)) -> PROPER1(X)
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PROPER1(p1(X)) -> PROPER1(X)
Used argument filtering: PROPER1(x1) = x1
f1(x1) = x1
s1(x1) = x1
p1(x1) = p1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER1(s1(X)) -> PROPER1(X)
PROPER1(f1(X)) -> PROPER1(X)
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PROPER1(f1(X)) -> PROPER1(X)
Used argument filtering: PROPER1(x1) = x1
s1(x1) = x1
f1(x1) = f1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER1(s1(X)) -> PROPER1(X)
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
PROPER1(s1(X)) -> PROPER1(X)
Used argument filtering: PROPER1(x1) = x1
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(f1(X)) -> ACTIVE1(X)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(s1(X)) -> ACTIVE1(X)
ACTIVE1(p1(X)) -> ACTIVE1(X)
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVE1(p1(X)) -> ACTIVE1(X)
Used argument filtering: ACTIVE1(x1) = x1
f1(x1) = x1
cons2(x1, x2) = x1
s1(x1) = x1
p1(x1) = p1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(f1(X)) -> ACTIVE1(X)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
ACTIVE1(s1(X)) -> ACTIVE1(X)
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVE1(s1(X)) -> ACTIVE1(X)
Used argument filtering: ACTIVE1(x1) = x1
f1(x1) = x1
cons2(x1, x2) = x1
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(f1(X)) -> ACTIVE1(X)
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVE1(cons2(X1, X2)) -> ACTIVE1(X1)
Used argument filtering: ACTIVE1(x1) = x1
f1(x1) = x1
cons2(x1, x2) = cons1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE1(f1(X)) -> ACTIVE1(X)
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVE1(f1(X)) -> ACTIVE1(X)
Used argument filtering: ACTIVE1(x1) = x1
f1(x1) = f1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
TOP1(ok1(X)) -> TOP1(active1(X))
TOP1(mark1(X)) -> TOP1(proper1(X))
The TRS R consists of the following rules:
active1(f1(0)) -> mark1(cons2(0, f1(s1(0))))
active1(f1(s1(0))) -> mark1(f1(p1(s1(0))))
active1(p1(s1(0))) -> mark1(0)
active1(f1(X)) -> f1(active1(X))
active1(cons2(X1, X2)) -> cons2(active1(X1), X2)
active1(s1(X)) -> s1(active1(X))
active1(p1(X)) -> p1(active1(X))
f1(mark1(X)) -> mark1(f1(X))
cons2(mark1(X1), X2) -> mark1(cons2(X1, X2))
s1(mark1(X)) -> mark1(s1(X))
p1(mark1(X)) -> mark1(p1(X))
proper1(f1(X)) -> f1(proper1(X))
proper1(0) -> ok1(0)
proper1(cons2(X1, X2)) -> cons2(proper1(X1), proper1(X2))
proper1(s1(X)) -> s1(proper1(X))
proper1(p1(X)) -> p1(proper1(X))
f1(ok1(X)) -> ok1(f1(X))
cons2(ok1(X1), ok1(X2)) -> ok1(cons2(X1, X2))
s1(ok1(X)) -> ok1(s1(X))
p1(ok1(X)) -> ok1(p1(X))
top1(mark1(X)) -> top1(proper1(X))
top1(ok1(X)) -> top1(active1(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.